// Filename: lvector3_src.I // Created by: drose (24Sep99) // //////////////////////////////////////////////////////////////////// // // PANDA 3D SOFTWARE // Copyright (c) Carnegie Mellon University. All rights reserved. // // All use of this software is subject to the terms of the revised BSD // license. You should have received a copy of this license along // with this source code in a file named "LICENSE." // //////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////// // Function: LVector3::Default Constructor // Access: Published // Description: //////////////////////////////////////////////////////////////////// INLINE_LINMATH FLOATNAME(LVector3):: FLOATNAME(LVector3)() { } //////////////////////////////////////////////////////////////////// // Function: LVector3::Copy Constructor // Access: Published // Description: //////////////////////////////////////////////////////////////////// INLINE_LINMATH FLOATNAME(LVector3):: FLOATNAME(LVector3)(const FLOATNAME(LVecBase3) ©) : FLOATNAME(LVecBase3)(copy) { } //////////////////////////////////////////////////////////////////// // Function: LVector3::Copy Assignment Operator // Access: Published // Description: //////////////////////////////////////////////////////////////////// INLINE_LINMATH FLOATNAME(LVector3) &FLOATNAME(LVector3):: operator = (const FLOATNAME(LVecBase3) ©) { FLOATNAME(LVecBase3)::operator = (copy); return *this; } //////////////////////////////////////////////////////////////////// // Function: LVector3::Copy Fill Operator // Access: Published // Description: //////////////////////////////////////////////////////////////////// INLINE_LINMATH FLOATNAME(LVector3) &FLOATNAME(LVector3):: operator = (FLOATTYPE fill_value) { FLOATNAME(LVecBase3)::operator = (fill_value); return *this; } //////////////////////////////////////////////////////////////////// // Function: LVector3::Constructor // Access: Published // Description: //////////////////////////////////////////////////////////////////// INLINE_LINMATH FLOATNAME(LVector3):: FLOATNAME(LVector3)(FLOATTYPE fill_value) : FLOATNAME(LVecBase3)(fill_value) { } //////////////////////////////////////////////////////////////////// // Function: LVector3::Constructor // Access: Published // Description: //////////////////////////////////////////////////////////////////// INLINE_LINMATH FLOATNAME(LVector3):: FLOATNAME(LVector3)(FLOATTYPE x, FLOATTYPE y, FLOATTYPE z) : FLOATNAME(LVecBase3)(x, y, z) { } //////////////////////////////////////////////////////////////////// // Function: LVector3::zero Named Constructor // Access: Published // Description: Returns a zero-length vector. //////////////////////////////////////////////////////////////////// INLINE_LINMATH const FLOATNAME(LVector3) &FLOATNAME(LVector3):: zero() { return (const FLOATNAME(LVector3) &)FLOATNAME(LVecBase3)::zero(); } //////////////////////////////////////////////////////////////////// // Function: LVector3::unit_x Named Constructor // Access: Published // Description: Returns a unit X vector. //////////////////////////////////////////////////////////////////// INLINE_LINMATH const FLOATNAME(LVector3) &FLOATNAME(LVector3):: unit_x() { return (const FLOATNAME(LVector3) &)FLOATNAME(LVecBase3)::unit_x(); } //////////////////////////////////////////////////////////////////// // Function: LVector3::unit_y Named Constructor // Access: Published // Description: Returns a unit Y vector. //////////////////////////////////////////////////////////////////// INLINE_LINMATH const FLOATNAME(LVector3) &FLOATNAME(LVector3):: unit_y() { return (const FLOATNAME(LVector3) &)FLOATNAME(LVecBase3)::unit_y(); } //////////////////////////////////////////////////////////////////// // Function: LVector3::unit_z Named Constructor // Access: Published // Description: Returns a unit Z vector. //////////////////////////////////////////////////////////////////// INLINE_LINMATH const FLOATNAME(LVector3) &FLOATNAME(LVector3):: unit_z() { return (const FLOATNAME(LVector3) &)FLOATNAME(LVecBase3)::unit_z(); } //////////////////////////////////////////////////////////////////// // Function: LVector3::get_xy // Access: Public // Description: Returns a 2-component vector that shares just the // first two components of this vector. //////////////////////////////////////////////////////////////////// INLINE_LINMATH FLOATNAME(LVector2) FLOATNAME(LVector3):: get_xy() const { return FLOATNAME(LVector2)(_v.v._0, _v.v._1); } //////////////////////////////////////////////////////////////////// // Function: LVector3::get_xz // Access: Public // Description: Returns a 2-component vector that shares just the // first and last components of this vector. //////////////////////////////////////////////////////////////////// INLINE_LINMATH FLOATNAME(LVector2) FLOATNAME(LVector3):: get_xz() const { return FLOATNAME(LVector2)(_v.v._0, _v.v._2); } //////////////////////////////////////////////////////////////////// // Function: LVector3::get_yz // Access: Public // Description: Returns a 2-component vector that shares just the // last two components of this vector. //////////////////////////////////////////////////////////////////// INLINE_LINMATH FLOATNAME(LVector2) FLOATNAME(LVector3):: get_yz() const { return FLOATNAME(LVector2)(_v.v._1, _v.v._2); } //////////////////////////////////////////////////////////////////// // Function: LVector3::unary - // Access: Published // Description: //////////////////////////////////////////////////////////////////// INLINE_LINMATH FLOATNAME(LVector3) FLOATNAME(LVector3):: operator - () const { return FLOATNAME(LVecBase3)::operator - (); } //////////////////////////////////////////////////////////////////// // Function: LVector3::vector + vecbase // Access: Published // Description: //////////////////////////////////////////////////////////////////// INLINE_LINMATH FLOATNAME(LVecBase3) FLOATNAME(LVector3):: operator + (const FLOATNAME(LVecBase3) &other) const { return FLOATNAME(LVecBase3)::operator + (other); } //////////////////////////////////////////////////////////////////// // Function: LVector3::vector + vector // Access: Published // Description: //////////////////////////////////////////////////////////////////// INLINE_LINMATH FLOATNAME(LVector3) FLOATNAME(LVector3):: operator + (const FLOATNAME(LVector3) &other) const { return FLOATNAME(LVecBase3)::operator + (other); } //////////////////////////////////////////////////////////////////// // Function: LVector3::vector - vecbase // Access: Published // Description: //////////////////////////////////////////////////////////////////// INLINE_LINMATH FLOATNAME(LVecBase3) FLOATNAME(LVector3):: operator - (const FLOATNAME(LVecBase3) &other) const { return FLOATNAME(LVecBase3)::operator - (other); } //////////////////////////////////////////////////////////////////// // Function: LVector3::vector - vector // Access: Published // Description: //////////////////////////////////////////////////////////////////// INLINE_LINMATH FLOATNAME(LVector3) FLOATNAME(LVector3):: operator - (const FLOATNAME(LVector3) &other) const { return FLOATNAME(LVecBase3)::operator - (other); } //////////////////////////////////////////////////////////////////// // Function: LVector3::cross // Access: Published // Description: //////////////////////////////////////////////////////////////////// INLINE_LINMATH FLOATNAME(LVector3) FLOATNAME(LVector3):: cross(const FLOATNAME(LVecBase3) &other) const { return FLOATNAME(LVecBase3)::cross(other); } //////////////////////////////////////////////////////////////////// // Function: LVector3::project // Access: Published // Description: Returns a new vector representing the projection of // this vector onto another one. The resulting vector // will be a scalar multiple of onto. //////////////////////////////////////////////////////////////////// INLINE_LINMATH FLOATNAME(LVector3) FLOATNAME(LVector3):: project(const FLOATNAME(LVecBase3) &onto) const { return FLOATNAME(LVecBase3)::project(onto); } //////////////////////////////////////////////////////////////////// // Function: LVector::angle_rad // Access: Published // Description: Returns the unsigned angle between this vector and // the other one, expressed in radians. Both vectors // should be initially normalized. //////////////////////////////////////////////////////////////////// INLINE_LINMATH FLOATTYPE FLOATNAME(LVector3):: angle_rad(const FLOATNAME(LVector3) &other) const { // This algorithm yields better results than acos(dot(other)), which // behaves poorly as dot(other) approaches 1.0. if (dot(other) < 0.0f) { FLOATTYPE a = ((*this)+other).length() / 2.0f; return MathNumbers::cpi((FLOATTYPE)0.0f) - 2.0f * casin(min(a, (FLOATTYPE)1.0)); } else { FLOATTYPE a = ((*this)-other).length() / 2.0f; return 2.0f * casin(min(a, (FLOATTYPE)1.0)); } } //////////////////////////////////////////////////////////////////// // Function: LVector::angle_deg // Access: Published // Description: Returns the angle between this vector and the other // one, expressed in degrees. Both vectors should be // initially normalized. //////////////////////////////////////////////////////////////////// INLINE_LINMATH FLOATTYPE FLOATNAME(LVector3):: angle_deg(const FLOATNAME(LVector3) &other) const { return rad_2_deg(angle_rad(other)); } //////////////////////////////////////////////////////////////////// // Function: LVector::signed_angle_rad // Access: Published // Description: returns the signed angle between two vectors. // The angle is positive if the rotation from this // vector to other is clockwise when looking in the // direction of the ref vector. // // Vectors (except the ref vector) should be initially // normalized. //////////////////////////////////////////////////////////////////// INLINE_LINMATH FLOATTYPE FLOATNAME(LVector3):: signed_angle_rad(const FLOATNAME(LVector3) &other, const FLOATNAME(LVector3) &ref) const { FLOATTYPE angle = angle_rad(other); if (cross(other).dot(ref) < 0.0f) { angle = -angle; } return angle; } //////////////////////////////////////////////////////////////////// // Function: LVector::signed_angle_deg // Access: Published // Description: Returns the signed angle between two vectors. // The angle is positive if the rotation from this // vector to other is clockwise when looking in the // direction of the ref vector. // // Vectors (except the ref vector) should be initially // normalized. //////////////////////////////////////////////////////////////////// INLINE_LINMATH FLOATTYPE FLOATNAME(LVector3):: signed_angle_deg(const FLOATNAME(LVector3) &other, const FLOATNAME(LVector3) &ref) const { return rad_2_deg(signed_angle_rad(other, ref)); } //////////////////////////////////////////////////////////////////// // Function: LVector::relative_angle_rad // Access: Published // Description: This method is deprecated. Do not use. //////////////////////////////////////////////////////////////////// INLINE_LINMATH FLOATTYPE FLOATNAME(LVector3):: relative_angle_rad(const FLOATNAME(LVector3) &other) const { return atan2((_v.v._0*other._v.v._1)-(_v.v._1*other._v.v._0), dot(other)); } //////////////////////////////////////////////////////////////////// // Function: LVector::relative_angle_deg // Access: Published // Description: This method is deprecated. Do not use. //////////////////////////////////////////////////////////////////// INLINE_LINMATH FLOATTYPE FLOATNAME(LVector3):: relative_angle_deg(const FLOATNAME(LVector3) &other) const { return relative_angle_rad(other)*180/3.1415926535; } //////////////////////////////////////////////////////////////////// // Function: LVector3::operator * scalar // Access: Published // Description: //////////////////////////////////////////////////////////////////// INLINE_LINMATH FLOATNAME(LVector3) FLOATNAME(LVector3):: operator * (FLOATTYPE scalar) const { return FLOATNAME(LVector3)(FLOATNAME(LVecBase3)::operator * (scalar)); } //////////////////////////////////////////////////////////////////// // Function: LVector3::operator / scalar // Access: Published // Description: //////////////////////////////////////////////////////////////////// INLINE_LINMATH FLOATNAME(LVector3) FLOATNAME(LVector3):: operator / (FLOATTYPE scalar) const { FLOATTYPE recip_scalar = 1.0f/scalar; return FLOATNAME(LVector3)(FLOATNAME(LVecBase3)::operator * (recip_scalar)); } //////////////////////////////////////////////////////////////////// // Function: LVector3::up // Access: Published, Static // Description: Returns the up vector for the given coordinate // system. //////////////////////////////////////////////////////////////////// INLINE_LINMATH FLOATNAME(LVector3) FLOATNAME(LVector3):: up(CoordinateSystem cs) { if (cs == CS_default) { cs = get_default_coordinate_system(); } switch (cs) { case CS_zup_right: case CS_zup_left: return FLOATNAME(LVector3)(0.0f, 0.0f, 1.0f); case CS_yup_right: case CS_yup_left: return FLOATNAME(LVector3)(0.0f, 1.0f, 0.0f); default: linmath_cat.error() << "Invalid coordinate system!\n"; return FLOATNAME(LVector3)(0.0f, 0.0f, 0.0f); } } //////////////////////////////////////////////////////////////////// // Function: LVector3::right // Access: Published, Static // Description: Returns the right vector for the given coordinate // system. //////////////////////////////////////////////////////////////////// INLINE_LINMATH FLOATNAME(LVector3) FLOATNAME(LVector3):: right(CoordinateSystem) { return FLOATNAME(LVector3)(1.0f, 0.0f, 0.0f); } //////////////////////////////////////////////////////////////////// // Function: LVector3::forward // Access: Published, Static // Description: Returns the forward vector for the given coordinate // system. //////////////////////////////////////////////////////////////////// INLINE_LINMATH FLOATNAME(LVector3) FLOATNAME(LVector3):: forward(CoordinateSystem cs) { if (cs == CS_default) { cs = get_default_coordinate_system(); } switch (cs) { case CS_zup_right: return FLOATNAME(LVector3)(0.0f, 1.0f, 0.0f); case CS_zup_left: return FLOATNAME(LVector3)(0.0f, -1.0f, 0.0f); case CS_yup_right: return FLOATNAME(LVector3)(0.0f, 0.0f, -1.0f); case CS_yup_left: return FLOATNAME(LVector3)(0.0f, 0.0f, 1.0f); default: linmath_cat.error() << "Invalid coordinate system!\n"; return FLOATNAME(LVector3)(0.0f, 0.0f, 0.0f); } } //////////////////////////////////////////////////////////////////// // Function: LVector3::down // Access: Published, Static // Description: Returns the down vector for the given coordinate // system. //////////////////////////////////////////////////////////////////// INLINE_LINMATH FLOATNAME(LVector3) FLOATNAME(LVector3):: down(CoordinateSystem cs) { return -up(cs); } //////////////////////////////////////////////////////////////////// // Function: LVector3::left // Access: Published, Static // Description: Returns the left vector for the given coordinate // system. //////////////////////////////////////////////////////////////////// INLINE_LINMATH FLOATNAME(LVector3) FLOATNAME(LVector3):: left(CoordinateSystem cs) { return -right(cs); } //////////////////////////////////////////////////////////////////// // Function: LVector3::back // Access: Published, Static // Description: Returns the back vector for the given coordinate // system. //////////////////////////////////////////////////////////////////// INLINE_LINMATH FLOATNAME(LVector3) FLOATNAME(LVector3):: back(CoordinateSystem cs) { return -forward(cs); } //////////////////////////////////////////////////////////////////// // Function: LVector3::rfu // Access: Published, Static // Description: Returns a vector that is described by its right, // forward, and up components, in whatever way the // coordinate system represents that vector. //////////////////////////////////////////////////////////////////// //INLINE_LINMATH FLOATNAME(LVector3) & FLOATNAME(LVector3):: INLINE_LINMATH FLOATNAME(LVector3) FLOATNAME(LVector3):: rfu(FLOATTYPE right_v, FLOATTYPE fwd_v, FLOATTYPE up_v, CoordinateSystem cs) { /* return forward(cs) * fwd_v + up(cs) * up_v + right(cs) * right_v; */ // fast implementation of above for axis-aligned coordinate systems if (cs == CS_default) { cs = get_default_coordinate_system(); } FLOATTYPE vy,vz; switch(cs) { case CS_yup_right: vz = -fwd_v; vy = up_v; break; case CS_yup_left: vz = fwd_v; vy = up_v; break; case CS_zup_right: vy = fwd_v; vz = up_v; break; case CS_zup_left: vy = -fwd_v; vz = up_v; default: linmath_cat.error() << "Invalid coordinate system!\n"; return FLOATNAME(LVector3)(0.0f, 0.0f, 0.0f); } return FLOATNAME(LVector3)(right_v,vy,vz); } #ifdef HAVE_PYTHON //////////////////////////////////////////////////////////////////// // Function: LVector3::python_repr // Access: Published // Description: //////////////////////////////////////////////////////////////////// INLINE_LINMATH void FLOATNAME(LVector3):: python_repr(ostream &out, const string &class_name) const { FLOATNAME(LVecBase3)::python_repr(out, class_name); } #endif // HAVE_PYTHON